

Probe data WG

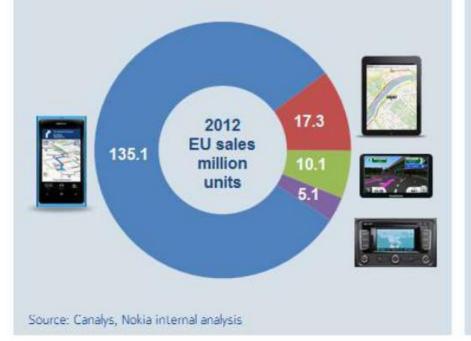
Call for participation

ITS Directive Specs (b) MS Expert meeting 10 October 2013

Maxime Flament, Co-Chair of the Probe Data WG ERTICO – ITS Europe

Overview

Probe Data State of Art US-JPN collaboration Probe Data WG OK as an example Conclusions

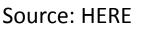


Facts and Trends

Rise of navigation enabled devices

The in-vehicle & service landscape

Clear trend towards connected services


- Most European car manufacturers have connected car offering in market in 2013
- Rise of connected systems sales

Platform and technology open

 Most car manufacturers bringing multiple solutions: connectivity via Smartphone (tethering vs. embedded), proprietary or 3rd party Apps and SDK, proxy solution.

The mobile phone landscape

6.8 Billion mobile phone subscriptions Devices are changing in variety and volume.

3

The Rise of Big Data

Today data generated every Data ≠ Information greater than the entire of Congress

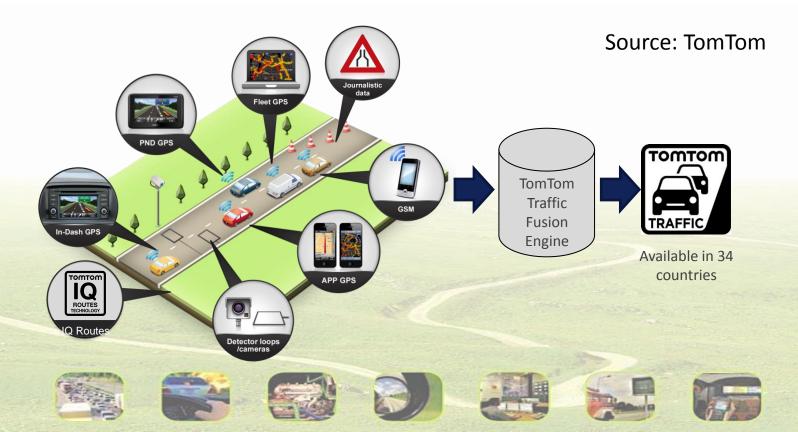
JJ Library

.cd daily doubles every

•

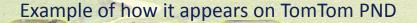
r the vast majority of data was auced by humans, but now machines are becoming large creators of data

The ama



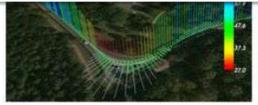
The Challenges of Big Data

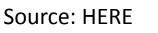
- Need to take advantage of real-time data inputs from many sources
- Filter, process and classify the data into meaningful information
- Oeliver the right information at the right time back to the users


Generating traffic data

TomTom Traffic – Incident and Jam Information

for the road stretches affected by incident/congestion

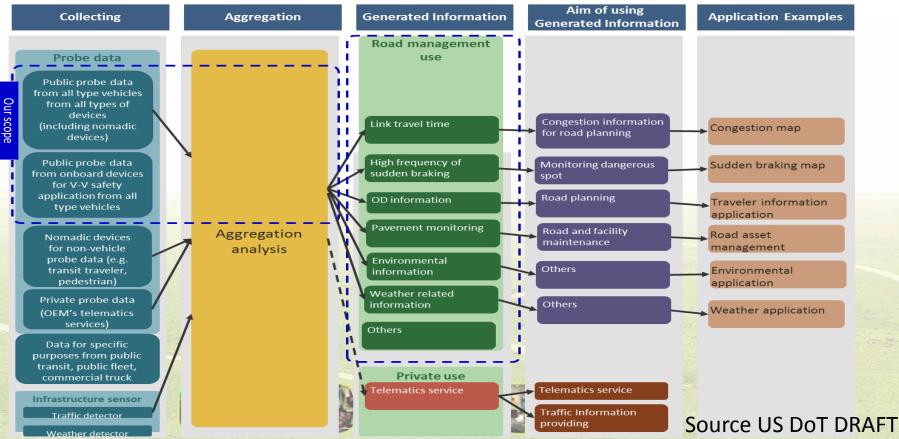



Smart Data – Supporting Road Safety

Provides analytics for road planning and future infrastructure development Map how drivers behaved when negotiating a sharp turn

US-JPN collaboration on Probe Data

US-JPN collaboration


Probe Data US-JPN collaboration

- US-JPN cooperation focussed on the benefit of Probe Data for the Road Operators
- Suilding up on eventual fitment of V2V/V2I on vehicles
- Initial focus on services using post-processed data for road operations, maintenance, modelling, etc
- Second focus on real-time processing for traffic management

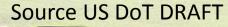
US-JPN collaboration

Probe Data US-JPN collaboration

US-JPN collaboration

Consolidated

List of Applications US-JPN


ID	Application	US	Japan
1	Estimate traffic management measures (e.g., travel time, speed, delay)	\checkmark	\checkmark
2	Identify bottleneck locations	\checkmark	\checkmark
3	Identify accident-prone locations		\checkmark
4	Determine road closures/detour routes (at the time of disaster)		\checkmark
5	Detect stopped vehicles or obstacles on the roads	\checkmark	\checkmark
6	Identify duration of congestion	\checkmark	\checkmark
7	Determine pavement traction conditions	\checkmark	\checkmark
8	Identify HazMat vehicles		\checkmark
9	Incident management/Emergency response	\checkmark	
10	Route guidance	\checkmark	

Consolidated US-JPN collaboration List of Applications US-JPN (cont.)

ID	Application	US	Japan
11	Traveler information	\checkmark	
12	Intelligent signal systems	\checkmark	
13	Freight operations	\checkmark	\checkmark
14	Transit operations	\checkmark	
15	Intelligent network (freeway/arterial) flow optimization	\checkmark	
16	Eco-Signal Operations	\checkmark	
17	Eco-Lanes	\checkmark	
18	Dynamic Low Emissions Zone	\checkmark	
19	Road and infrastructure deterioration diagnosis		\checkmark

Selected common applications ^{US-JPN collaboration} (US-JPN)

Traffic Management Measures Estimation Dynamic Speed Harmonization Road Weather Management Almost all discussions are assuming that V2V/V2I Probe Data will be deployed

iMobility Forum Probe Data WG (PDWG)

Mission

What mobility services can we achieve together with Probe Data and for whom?

Scope of Probe Data

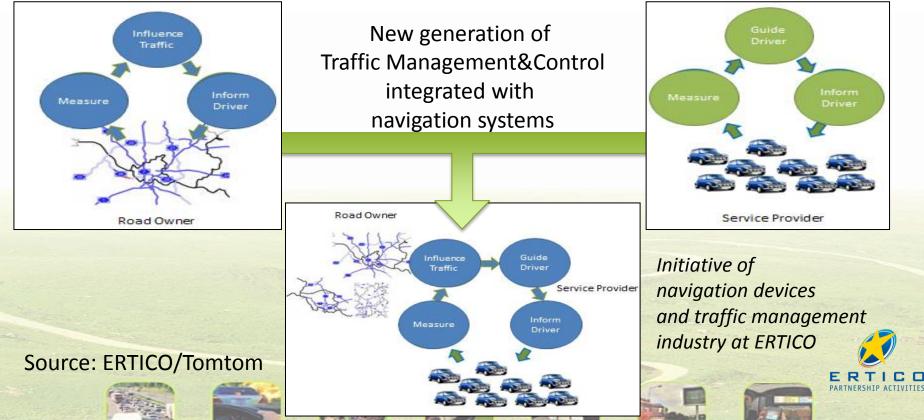
Vehicle-centric vs Multi-Modal? → Vehicle-centric first then extension to Multi-Modal

PDWG: Topics of interest

- Governance of European Probe Data
- Policy and research needs
 - ITS Directive until 2017 and after?
- New generation data collection
 - V2V/V2I: a game changer for PA?
- Assess cost/benefit of Probe data vs other means
- Transversal issues: privacy, security, ownership, quality

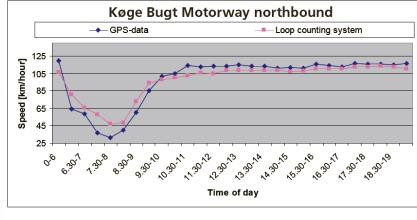
Objectives

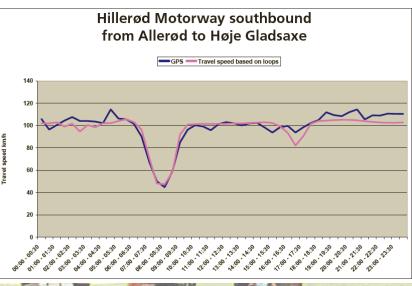
- Define Probe Data scope
- Raise awareness of collected Probe Data
- Select public-domain services that could benefit from probe data
- Identify what it takes to enable these services
 - Data chain, Roles, Responsibilities,
 - Possibly propose Public Private cooperation
- Clarify issues related to privacy, security, ownership, quality....
- Identify research needs, pilots, awareness campaigns, PP, Policy support
- Identify relevant standards for EU and asses the need for harmonization
- Support (and align with) the trilateral EU-US-Japan collaboration on Probe Data



PDWG linked initiative: TM2.0

DK GPS project


- Travel speed covered on 77% of major road network (10kkm) using HERE Probe Data*
- Detection of speeds with PD similar to current loop counting systems (Crosssection and Segment)


* criteria: Min 10 observations/segment/30min Source: Danish Road Directorate

Conclusions

- Probe Data can be a powerful tool for public authorities in the near future leading to substantial ITS infrastructure savings
- The iMobility Probe Data WG wants to clarify this potential by bringing current actors with the PA
- V2V/V2I data probing is seen as a game changer; US and Japan have done the first steps planning the use of this data

